190 research outputs found

    Braiding Interactions in Anyonic Quantum Walks

    Full text link
    The anyonic quantum walk is a dynamical model describing a single anyon propagating along a chain of stationary anyons and interacting via mutual braiding statistics. We review the recent results on the effects of braiding statistics in anyonic quantum walks in quasi-one dimensional ladder geometries. For anyons which correspond to spin-1/2 irreps of the quantum groups SU(2)kSU(2)_k, the non-Abelian species (1<k<)(1<k<\infty) gives rise to entanglement between the walker and topological degrees of freedom which is quantified by quantum link invariants over the trajectories of the walk. The decoherence is strong enough to reduce the walk on the infinite ladder to classical like behaviour. We also present numerical results on mixing times of SU(2)2SU(2)_2 or Ising model anyon walks on cyclic graphs. Finally, the possible experimental simulation of the anyonic quantum walk in Fractional Quantum Hall systems is discussed.Comment: 13 pages, submitted to Proceedings of the 2nd International Conference on Theoretical Physics (ICTP 2012

    Realization of Arbitrary Gates in Holonomic Quantum Computation

    Get PDF
    Among the many proposals for the realization of a quantum computer, holonomic quantum computation (HQC) is distinguished from the rest in that it is geometrical in nature and thus expected to be robust against decoherence. Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a holonomy. We demonstrate for the first time that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the CNOT gate, the SWAP gate and the discrete Fourier transformation can be obtained with a single loop.Comment: 8 pages, 6 figure

    Non-Abelian Chern-Simons theory from a Hubbard-like model

    Get PDF
    Here, we provide a simple Hubbard-like model of spin-1/2 fermions that gives rise to the SU(2)-symmetric Thirring model that is equivalent, in the low-energy limit, to the Yang-Mills-Chern-Simons model. First, we identify the regime that simulates the SU(2) Yang-Mills theory. Then, we suitably extend this model so that it gives rise to the SU(2) Chern-Simons theory with level k≥2 that can support non-Abelian anyons. This is achieved by introducing multiple fermionic species and modifying the Thirring interactions, while preserving the SU(2) symmetry. Our proposal provides the means to theoretically and experimentally probe non-Abelian SU(2) level k topological phases

    Transport properties of anyons in random topological environments

    Get PDF
    The quasi one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons of the same type. Two distinct behaviours are identified. We analytically demonstrate that all types of Abelian anyons localise purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localise. This is due to their entanglement with the anyonic environment that effectively induces dephasing. Our study demonstrates that localisation properties strongly depend on non-local topological interactions and it provides a clear distinction in the transport properties of Abelian and non-Abelian statistics.Comment: 9 pages, 5 figure

    Seeing Majorana fermions in time-of-flight images of spinless fermions coupled by s-wave pairing

    Get PDF
    The Chern number, nu, as a topological invariant that identifies the winding of the ground state in the particle-hole space, is a definitive theoretical signature that determines whether a given superconducting system can support Majorana zero modes. Here we show that such a winding can be faithfully identified for any superconducting system (p-wave or s-wave with spin-orbit coupling) through a set of time-of-flight measurements, making it a diagnostic tool also in actual cold atom experiments. As an application, we specialize the measurement scheme for a chiral topological model of spinless fermions. The proposed model only requires the experimentally accessible s-wave pairing and staggered tunnelling that mimics spin-orbit coupling. By adiabatically connecting this model to Kitaev's honeycomb lattice model, we show that it gives rise to nu = \pm 1 phases, where vortices bind Majorana fermions, and nu=\pm 2 phases that emerge as the unique collective state of such vortices. Hence, the preparation of these phases and the detection of their Chern numbers provide an unambiguous signature for the presence of Majorana modes. Finally, we demonstrate that our detection procedure is resilient against most inaccuracies in experimental control parameters as well as finite temperature.Comment: 9+4 pages, 11 figures, expanded versio

    Cold atom simulation of interacting relativistic quantum field theories

    Full text link
    We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.Comment: 5 pages, 3 figues, Phys. Rev. Lett. versio

    Decoherence-free dynamical and geometrical entangling phase gates

    Full text link
    It is shown that entangling two-qubit phase gates for quantum computation with atoms inside a resonant optical cavity can be generated via common laser addressing, essentially, within one step. The obtained dynamical or geometrical phases are produced by an evolution that is robust against dissipation in form of spontaneous emission from the atoms and the cavity and demonstrates resilience against fluctuations of control parameters. This is achieved by using the setup introduced by Pachos and Walther [Phys. Rev. Lett. 89, 187903 (2002)] and employing entangling Raman- or STIRAP-like transitions that restrict the time evolution of the system onto stable ground states.Comment: 10 pages, 9 figures, REVTEX, Eq. (20) correcte

    Topological Degeneracy and Vortex Manipulation in Kitaev's Honeycomb Model

    Get PDF
    The classification of loop symmetries in Kitaev's honeycomb lattice model provides a natural framework to study the Abelian topological degeneracy. We derive a perturbative low-energy effective Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations. Using this form we demonstrate at what order the system's topological degeneracy is lifted by finite size effects and note that in the thermodynamic limit it is robust to all orders. Further, we demonstrate that the loop symmetries themselves correspond to the creation, propagation, and annihilation of fermions. We note that these fermions, made from pairs of vortices, can be moved with no additional energy cost

    Entropic manifestations of topological order in three dimensions

    Get PDF
    We evaluate the entanglement entropy of exactly solvable Hamiltonians corresponding to general families of three-dimensional topological models. We show that the modification to the entropic area law due to three-dimensional topological properties is richer than the two-dimensional case. In addition to the reduction of the entropy caused by a nonzero vacuum expectation value of contractible loop operators, a topological invariant emerges that increases the entropy if the model consists of nontrivially braiding anyons. As a result the three-dimensional topological entanglement entropy provides only partial information about the two entropic topological invariants
    corecore